Stereoselectivity of formation of polycyclic ferrocenyl-4,5-dihydropyrazoles based on E - and Z-s-cis- α, β-enones

T. Klimova ${ }^{\text {a,* }}$, E.I. Klimova ${ }^{\text {a }}$, M. Martínez García ${ }^{\text {b,1 }}$, E.A. Vázquez López ${ }^{\text {a }}$, C. Alvarez Toledano ${ }^{\text {b }}$, A.R. Toscano ${ }^{\text {b }}$, L. Ruíz Ramírez ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, National Autonomous University of Mexico, C.P. 04510, Mexico DF, Mexico
${ }^{\text {b }}$ Institute of Chemistry, National Autonomous University of Mexico, C.P. 04510, Mexico, DF, Mexico

Received 17 December 2000; accepted 27 February 2001

Abstract

Reaction of E - and Z-isomeric 2-ferrocenylmethylidene-1-tetralone, 2-ferrocenylmethylidene-3-quinuclidinone, 1-methyl-3-fer-rocenylmethylidene-4-piperidone and 2-ferrocenylmethylidenetropinone with hydrazine proceeds stereospecifically with the formation of the same diastereomeric polycyclic ferrocenyldihydropyrazoles independently of the geometric configuration of the starting α, β-unsaturated ketones. X-ray structural analysis is presented for the trans-diastereomer of 4-acetyl-3-ferrocenyl-1,4,5-triazatricyclo[5.2.2.0 ${ }^{2,6}$]undec-5-ene. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Ferrocene; Dihydropyrazol; Asymmetric induction; Stereospecificity; X-ray structural analysis

1. Introduction

It is known that the asymmetric synthesis of a chiral fragment of a molecule can occur under the influence of an asymmetry-inducing element in its other part [1,2]. According to the nature of the chiral elements in the molecule of organic compound, nine versions of asymmetric induction are possible [1]. Due to characteristic steric features of the metallocene system of ferrocene, the ferrocenyl substituent in a molecule of an organic compound can induce the following types of asymmetry: chiral plane \rightarrow chiral center, chiral center \rightarrow chiral plane, and chiral center \rightarrow chiral center [1-4].

Stereochemical aspects of the synthesis of heterocyclic systems with a ferrocene fragment in the molecule have been studied with a limited number of examples. Thus asymmetric induction of the chiral plane \rightarrow chiral center type and vice versa, i.e. of the types 1,1 and 1,3 , have been reported [5] in the formation of 4,5-dihydropyrazoles with ferrocenyl and phenylbutadienyliron-

[^0]tricarbonyl substituents at positions 3 and 5 of the heterocyclic system. High diastereoselectivities of the reaction have been noted in different routes for the synthesis of these compounds. The high 1,2 -asymmetric induction of the type chiral center \rightarrow chiral center have been recently observed in the synthesis of bicyclic ferro-cenyl-4,5-dihydropyrazoles based on E-, E-bis(ferrocenylmethylidene)cycloalkanones [6,7]:

The interest in diastereoselective synthesis is currently associated with demands from pharmacology. Fer-rocene-containing compounds often manifest biological activities. Thus ferrocenyl-substituted dihydropyrazoles, cyclopropanes, cyclohexenes, tetrahydrophthalates ex-
hibit antiinflammatory [8-10], analgesic [8-10], and antiviral activities [11]. Diastereomeric forms of the same compound should possess different activities. Thus the study of the ability of a ferrocene substituent to induce asymmetry is a topical task.

In a continuation of our investigations into chemistry of dihydropyrazoles, we have studied the asymmetric induction of the type 1,2 (chiral center \rightarrow chiral center) in the synthesis of polycyclic ferrocenyldihydropyrazoles 1-4:
viz. $Z-5 \mathbf{b}, E-\mathbf{6 b}, Z-7 \mathbf{b}$, and $Z-\mathbf{8 b}$, were prepared by the HBF_{4}-catalyzed isomerization as described previously [14,15].

The addition of hydrazine [16] to the chalcones 5a$\mathbf{8 a}$ and $\mathbf{5 b}-\mathbf{8 b}$ yielded relatively unstable N-unsubstituted dihydropyrazoles. Those obtained from the former are arbitrarily denoted 11a-14a, while those obtained from the isomeric chalcones are denoted 11b$\mathbf{1 4 b}$. These compounds are stable in dry state but

2. Results and discussion

α, β-Enones $5-\mathbf{8}$ served as the starting compounds. They were prepared by condensation of ferrocenecarbaldehyde with the corresponding ketones in the presence of NaOH in aqueous ethanol at ambient temperature [7]:
rapidly decompose in solutions, which precludes their characterization by NMR spectroscopy. The melting points of compounds 11a and 11b, 12a and 12b, 13a and $\mathbf{1 3 b}, \mathbf{1 4 a}$ and $\mathbf{1 4 b}$, respectively, coincide, which allows one to conclude that they are identical pairwise.
N-Acetyldihydropyrazoles prepared by acetylation of each pair of compounds $11 \mathbf{a}, \mathbf{b}, \mathbf{1 2 a}, \mathbf{b}, \mathbf{1 3 a}, \mathbf{b}$ and $\mathbf{1 4 a}, \mathbf{b}$

The chalcones $\mathbf{5 a}-\mathbf{8 a}$ were formed as single configurational isomers with the 'outward' arrangement of the bulky ferrocenyl substituents with respect to the s-cisheterodiene systems (${ }^{1} \mathrm{H}-\mathrm{NMR}$ data), viz. $E-5 \mathbf{a}, Z-\mathbf{6 a}$, $E-7 \mathbf{a}$, and $E-8 \mathbf{a}$ [6,12,13]. Their geometrical isomers with the 'inward' arrangement of the ferrocenyl group,
(1, 2, 3 and 4, respectively) have identical melting points and ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral parameters, which confirms the conclusion on the formation of a single diastereomeric form of dihydropyrazloles irrespective of the configuration of the starting α, β-enone.

11a,b-14a,b

(11a,b)

(12a,b)

(13a,b)
The signals for $\mathrm{H}-5$ of the dihydropyrazole rings in compounds 2 and 3 resonate at $\delta 4.86$ and 5.51 ppm , the spin-spin coupling constants $J_{\mathrm{H}-3, \mathrm{H}-3 \mathrm{a}}$ are equal to 8.6 and 9.9 Hz , respectively. In compounds $\mathbf{1}$ and $\mathbf{4}$ the signals for $\mathrm{H}-3$ occurs at $\delta 4.93$ and 4.56 ppm , and its spin-spin coupling constant is smaller ($J_{\mathrm{H}-3, \mathrm{H}-3 \mathrm{a}}=6.8$ and 5.0 Hz). Ferrocenylmethylidene-substituted bicyclic dihydropyrazoles have been identified by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and X-ray diffraction methods [6,7]. It was shown that the chemical shifts and values of J for the H-3 of the dihydropyrazole rings are diagnostic as regards their

Fig. 1. Crystal structure of 2. Selected bond lengths $(\AA): N(1)-N(2)=$ $1.421(4) ; \quad \mathrm{N}(1)-\mathrm{C}(7 \mathrm{a})=1.276(4) ; \quad \mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})=1.500(4) ; \quad \mathrm{N}(2)-$ $\mathrm{C}(3)=1.508(4) ; \quad \mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})=1.529(4) ; \quad \mathrm{C}(3 \mathrm{a})-\mathrm{N}(4)=1.479(4)$; $\mathrm{N}(4)-\mathrm{C}(5)=1.481(5) ; \quad \mathrm{N}(4)-\mathrm{C}(9)=1.494(5) ; \quad \mathrm{C}(5)-\mathrm{C}(6)=1.540(6)$; $\mathrm{C}(3)-\mathrm{C}(12)=1.506(5)$. Selected bond angles $\left({ }^{\circ}\right): \mathrm{C}(7 \mathrm{a})-\mathrm{N}(1)-\mathrm{N}(2)=$ 106.7(3); $\quad \mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)=112.0(2) ; \quad \mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})=100.6(2)$; $\mathrm{N}(4)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})=108.2(3) ; \quad \mathrm{C}(3 \mathrm{a})-\quad \mathrm{N}(4)-\mathrm{C}(5)=105.1(3)$; $\mathrm{C}(9)-\mathrm{N}(4)-\mathrm{C}(5)=107.3(3) ; \mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)-\mathrm{C}(8)=103.3(3) ; \mathrm{N}(1)-\mathrm{C}(7 \mathrm{a})-$ $\mathrm{C}(3 \mathrm{a})=115.8(3) ; \mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(3)=103.0(3)$.

Table 1
Crystal data, data collection and refinement parameters for $\mathbf{2}$

Data	2
Molecular formula	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FeN}_{3} \mathrm{O}$
Molecular weight	377.26
Temperature (K)	293
Crystal system	Orthorombic
Space group	Pbca
Unit cell dimensions	
$a(\AA)$	18.174(3)
b (${ }_{\text {(}}$)	9.034(1)
$c(\AA)$	20.853(2)
$\alpha\left({ }^{\circ}\right)$	90.0
$\beta\left({ }^{\circ}\right)$	90.0
$\gamma\left({ }^{\circ}{ }^{\circ}\right.$	90.0
$V\left(\AA^{3}\right)$	3423.7(8)
Z	8
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.464
Absorption coefficient (mm^{-1})	0.894
$F(000)$	1584
$\lambda(\mathrm{A})\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right.$ radiation)	0.71073
Monochromator	Graphite
Θ Scanning range (${ }^{\circ}$)	1.50-25.00
Total number of reflections	3845
Number of independent reflections	3012
$R_{\text {int }}$	0.0434
Number of refinable parameters	296
Goodness-of-fit on F^{2}	1.023 (full-matrix least-squares refinement on F^{2})
Residual electron density (e \AA^{-3}) $\rho_{\text {min }} / \rho_{\text {max }}$	$-0.327 / 0.441$
Weighting scheme	$\begin{aligned} & w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0735 P)^{2} \\ & \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$

trans- or cis-arrangement: in the trans-isomers, the resonances for $\mathrm{H}-3$ are downfield shifted compared to the $c i s$-isomers and the spin-spin coupling constants for the former are larger than those for the latter. Thus, comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of compounds $\mathbf{2}$ and $\mathbf{3}$ with those of the previously synthesized compounds [6,7] allows attribution of the trans-structure to the diasteromers $\mathbf{2}$ and $\mathbf{3}$ with the pseudo-axial orientation of the $\mathrm{H}-3 \mathrm{a}$ and $\mathrm{H}-3$ atoms and pseudoequatorial orientation of the ferrocenyl substituent.

The independent and direct structural elucidation of one of dihydropyrazoles was performed using X-ray diffraction analysis of a single crystal of compound $\mathbf{2}$. The general view of this molecule is shown in Fig. 1. The crystallographic data, parameters of the X-ray experiment, and refinements are listed in Table 1.
The central tricyclic skeleton is the key element of the structure of $\mathbf{2}$. The quinuclidine bicyclic system is fused to a five-membered dihydropyrazole ring, which exists in a flattened envelope conformation. The ferrocenyl substituent occupies pseudo-equatorial position, the $\mathrm{H}(3 \mathrm{a})$ and $\mathrm{H}(3)$ atoms at $\mathrm{C}(3 \mathrm{a})$ and $\mathrm{C}(3)$, respectively, are in trans-arrangement. The $\mathrm{N}(1)=\mathrm{C}(7 \mathrm{a})$ bond in the
dihydropyrazoline ring is somewhat longer, while the $\mathrm{N}(1)-\mathrm{N}(2)$ bond is somewhat shorter than the standard bond lengths ($\mathrm{C}=\mathrm{N}, 1.23 \AA$ [17]; $\mathrm{N}-\mathrm{N}, 1.45 \AA$ [18]). The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths in the quinuclidine fragment as well as the $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths and geometrical parameters of the ferrocene sandwich are close to the standard values [19].

Thus, X-ray diffraction analysis of a single crystal of compound 2 confirmed the trans-orientation of the hydrogen atoms in the dihydropyrazole ring. Comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of compound 2 with those of compounds $\mathbf{1}, \mathbf{3}$ and $\mathbf{4}$ allows one to unambiguously ascribe the trans-structure to compound 3. However, no definite conclusion on the spatial structure of compounds 1 and 4 (trans- or cis-) could be made from the available data.

3. Experimental

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were registered in CDCl_{3} on a 'Unity Inova Varian' spectrometer (300 and 75 MHz) using $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. Column chromatography was carried out on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activity III according to Brockmann). The parameters of the unit cell and the X-ray diffraction intensities were recorded on a 'Siemens P4/PC' diffractometer at 293 K . The crystallographic data, parameters of the X-ray diffraction experiment, and refinements are listed in Table 1.

3.1. E-2-Ferrocenylmethylidene-7-methoxy-1-tetralone 5a

E-2-Ferrocenylmethylidene-7-methoxy-1-tetralone 5a was obtained by a conventional procedure [1] starting from ferrocenecarbaldehyde and 7-methoxy-1-tetralone in the presence of alkali in aqueous EtOH in 70% yield, dark red crystals, m.p. $138-139^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm})$: $2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.87(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}); $4.17\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.57(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$); 7.05 (dd, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=3.0,8.4 \mathrm{~Hz}$); 7.16 $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=8.4 \mathrm{~Hz}\right) ; 7.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=3.0\right.$ $\mathrm{Hz}) ; 7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm}): 20.78,26.45$ $\left(2 \mathrm{CH}_{2}\right) ; 56.75\left(\mathrm{CH}_{3}\right) ; 69.53\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 70.66,70.96\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$; $79.27\left(\mathrm{C}_{i p s o \mathrm{Fc}}\right) ; 113.95(\mathrm{CH}=) ; 119.85,127.03,137.13$ $\left(\mathrm{C}_{6} \mathrm{H}_{3}\right) ; 131.19$, 132.11, $134.91(3 \mathrm{C}) ; 156.16\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right)$, $187.10(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 70.81 ; H, 5.21 ; Fe , 15.17. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FeO}_{2}$: C, $70.98 ; \mathrm{H}, 5.42 ; \mathrm{Fe}$, 15.00%.

3.2. Z-2-Ferrocenylmethylidene-7-methoxy-1-tetralone 5b

A mixture of the chalcone $\mathbf{5 a}(1.12 \mathrm{~g}, 3 \mathrm{mmol})$ and HBF_{4} etherate (1 ml) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred in an atmosphere of dry argon for 6 h at $30-33^{\circ} \mathrm{C}$. The
mixture was then cooled to room temperature (r.t.), poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$, and the organic layer was separated. It was washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was chromatographed on alumina to yield $0.48 \mathrm{~g}(43 \%)$ of the starting chalcone $\mathbf{5 a}$ (eluted with hexane), m.p. $138-139^{\circ} \mathrm{C}$, and $0.34 \mathrm{~g}(30 \%)$ of the Z-isomer 5b (eluted with benzene), violet crystals, m.p. $143-144^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm}): 2.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.95(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ; 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 4.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.36(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.12$ (dd, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}$, $J=2.7,8.0 \mathrm{~Hz}) ; 7.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=8.0 \mathrm{~Hz}\right) ; 7.65(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=2.7 \mathrm{~Hz}\right) ; 7.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$ ppm): 21.80, $26.69\left(2 \mathrm{CH}_{2}\right) ; 58.85\left(\mathrm{CH}_{3}\right) ; 69.62\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$; 71.06, $71.23\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 79.43\left(\mathrm{C}_{i p s o \mathrm{Fc}}\right) ; 116.64(\mathrm{CH}=)$; 119.56, 128.03, $137.93\left(\mathrm{C}_{6} \mathrm{H}_{3}\right) ; 131.34,132.61,136.98$ (3C); $156.67\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{O}\right), 189.20(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 71.12; $\mathrm{H}, 5.32 ; \mathrm{Fe}$, 14.86. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FeO}_{2}: \mathrm{C}$, 70.98 ; H, 5.42; Fe, 15.00\%.

3.3. Z-2-Ferrocenylmethylidene-3-quinuclidone $\boldsymbol{6} \boldsymbol{a}$

Z-2-Ferrocenylmethylidene-3-quinuclidone 6a was obtained analogously starting from ferrocenecarbaldehyde and quinuclidone hydrochloride in 76% yield, dark red crystals, m.p. $122-123^{\circ} \mathrm{C}$ (literature data: m.p. $122-123^{\circ} \mathrm{C}[1]$).

3.4. E-2-Ferrocenylmethylidene-3-quinuclidone $\boldsymbol{6} \boldsymbol{b}$

E-2-Ferrocenylmethylidene-3-quinuclidone $\mathbf{6 b}$ was obtained by isomerization of the Z-chalcone $\mathbf{6 a}(0.96 \mathrm{~g}$, 3 mmol) by HBF_{4} etherate as described above to give after chromatography $0.11 \mathrm{~g}(11 \%)$ of the starting $6 \mathbf{a}$ (eluted with hexane), m.p. $122-123^{\circ} \mathrm{C}[1]$ and E-isomer 6b ($0.75 \mathrm{~g}, 75 \%$) eluted with benzene, violet crystals, m.p. $114-115^{\circ} \mathrm{C}$ (literature data: m.p. $113-114^{\circ} \mathrm{C}$ [2]).

3.5. E-3-Ferrocenylmethylidene-1-methyl-4-piperidone $7 a$

Ferrocenecarbaldehyde ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$) and 1-methyl-4-piperidone $(2.0 \mathrm{ml})$ were added to a solution of $\mathrm{NaOH}(1.0 \mathrm{~g})$ in 50% aqueous $\mathrm{EtOH}(40 \mathrm{ml})$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . Then it was mixed with benzene (100 ml), the organic layer was separated, washed with water, and the solvent was removed in vacuo. The residue was chromatographed on alumina (3:1 hexane-benzene) to give $1.98 \mathrm{~g}(64 \%)$ of compound 7 a and $0.5 \mathrm{~g}(21 \%)$ of 3,5-bis(ferrocenylmethyli-dene)-1-methyl-4-piperidone (9).

Compound 7a, red-violet crystals, m.p. $117-118^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm}): 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.60\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=6.0 \mathrm{~Hz}) ; 2.78\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=6.0 \mathrm{~Hz}\right) ; 3.49(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=2.0 \mathrm{~Hz}\right) ; 4.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.18(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=, J=2.0$
$\mathrm{Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm}): 38.75\left(\mathrm{CH}_{3}\right) ; 46.34,52.45$, $57.65\left(3 \mathrm{CH}_{2}\right) ; 69.53\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 71.20,71.36\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 78.61$ $\left(\mathrm{C}_{\text {ipsoFc }}\right) ; 128.52(\mathrm{CH}=) ; 129.64(\mathrm{C}) ; 198.37(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 65.88; H, 6.11; Fe, 18.17; N, 4.39. Calc. for $\mathrm{C}_{17} \mathrm{H}_{19}$ FeNO: C, 66.04; H, 6.19; Fe, 18.06; N, 4.53\%.

Compound 9, violet crystals, m.p. $197-198^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($\delta \mathrm{ppm}): 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.61\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$, $J=1.36 \mathrm{~Hz}) ; 4.18\left(\mathrm{~s}, 10 \mathrm{H}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$; $4.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.61(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}=)$. Anal. Found: C, 66.74; H, 5.21; Fe, 22.35; N, 2.58. Calc. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{Fe}_{2} \mathrm{NO}: \mathrm{C}, 66.56 ; \mathrm{H}, 5.39$; Fe, 22.11; N, 2.77\%.

3.6. Z-3-Ferrocenylmethylidene-1-methyl-4-piperidone

 7bZ-3-Ferrocenylmethylidene-1-methyl-4-piperidone 7b was obtained by isomerization of the E-chalcone 7 a ($1.5 \mathrm{~g}, 5 \mathrm{mmol}$) by HBF_{4} etherate as described above to give after chromatography $0.6 \mathrm{~g}(40 \%)$ of the starting $7 \mathbf{a}$ (eluted with $3: 1$ hexane-benzene), m.p. $117-118^{\circ} \mathrm{C}$, and Z-isomer 7b $(0.66 \mathrm{~g}, 44 \%$, eluted with $2: 1$ hexanebenzene, violet crystals, m.p. $103-104^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$ ppm): 2.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); 2.73 (t, $2 \mathrm{H}, \mathrm{CH}_{2}, J=5.8 \mathrm{~Hz}$); 2.94 (t, 2H, CH2, J=5.8 Hz); 3.69 (d, 2H, CH2, $J=1.6$ $\mathrm{Hz}) ; 4.19\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.78(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=, J=1.6 \mathrm{~Hz})$. Anal. Found: C, 66.16; H, 6.03; Fe, 17.93; N, 4.65. Calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FeNO}: \mathrm{C}, 66.04 ; \mathrm{H}, 6.19$; $\mathrm{Fe}, 18.06$; N, 4.53%.

3.7. E-2-Ferrocenylmethylidenetropinone $8 \boldsymbol{a}$

Ferrocenecarbaldehyde ($2.14 \mathrm{~g}, 10 \mathrm{mmol}$), tropinone $(2.19 \mathrm{~g}, 15 \mathrm{mmol})$, and $\mathrm{NaOH}(1.0 \mathrm{~g})$ in 50% aqueous $\mathrm{EtOH}(40 \mathrm{ml})$ were stirred at $20^{\circ} \mathrm{C}$ for 18 h . Then benzene (100 ml) was added, the organic layer was separated, washed with water, and the solvent was removed in vacuo. The residue was chromatographed on alumina ($3: 1$ hexane-chloroform) to give 2.01 g (60%) of monochalcone 8 a and $0.51 \mathrm{~g}(23 \%)$ of 2,7-bis(ferrocenylmethylidene)tropinone (10).

Compound 8a, violet crystals, m.p. $110-111^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($\delta \mathrm{ppm}): 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.60\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=6.0 \mathrm{~Hz}) ; 2.78\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=6.0 \mathrm{~Hz}\right) ; 3.49(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=2.0 \mathrm{~Hz}\right) ; 4.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.18(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}=, J=2.0$ Hz). Anal. Found: C, 67.93; C, 6.44; Fe, 16.71; N, 4.07. Calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FeNO}: \mathrm{C}, 68.07$; H, 6.32; $\mathrm{Fe}, 16.66$; N, 4.18\%.

Compound 10, red crystals, m.p. $235-236^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($\delta \mathrm{ppm}): 1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 4.19\left(\mathrm{~s}, 10 \mathrm{H}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.38(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{CH}) ; 4.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.54$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.62(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}=) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm})$: $30.22\left(2 \mathrm{CH}_{2}\right) ; 35.94\left(\mathrm{CH}_{3}\right) ; 61.00(2 \mathrm{CH}) ; 69.48\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right)$; $68.95,71.04,71.13,73.21\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 78.48\left(2 \mathrm{C}_{i p s o \mathrm{Fc}}\right)$; 134.48 (2 C); $137.05(2 \mathrm{CH}=)$; $185.47(\mathrm{C}=\mathrm{O})$. Anal.

Found: C, 67.68; H, 5.73; Fe, 20.93; N, 2.48. Calc. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{Fe}_{2} \mathrm{NO}: \mathrm{C}, 67.82 ; \mathrm{H}, 5.50 ; \mathrm{Fe}, 21.02 ; \mathrm{N}, 2.65 \%$.

3.8. Z-2-Ferrocenylmethylidenetropinone $\boldsymbol{8 b}$

Z-2-Ferrocenylmethylidenetropinone $\mathbf{8 b}$ was obtained by the isomerization of chalcone $\mathbf{8 a}(1.67 \mathrm{~g}, 5$ mmol) using a procedure analogous to that used for the preparation of compound $\mathbf{5 b}$. Following chromatography ($2: 1$ hexane-benzene), the starting compound 8a ($0.4 \mathrm{~g}, 24 \%$), m. p. $110-111^{\circ} \mathrm{C}$, was recovered, and Z-isomer $8 \mathbf{b}$ ($1.04 \mathrm{~g}, 62 \%$) was isolated, violet crystals, m.p. $98-99^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm}): 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.41(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ; 4.15\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}) ; 4.42(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=)$. Anal. Found: C, 68.19; H, 6.16; Fe, 16.83; N, 4.25. Calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FeNO}: \mathrm{C}, 68.07 ; \mathrm{H}, 6.32 ; \mathrm{Fe}, 16.66 ; \mathrm{N}$, 4.18\%.

3.9. 5-Ferrocenyl-12-methoxy-3,4-diazatricyclo[7.4.3.0 ${ }^{2,6}$]trideca-2,9,11,13-tetraene 11

(A) Hydrazine hydrate (5 ml) was added to a solution of E-chalcone 5 a ($1.23 \mathrm{~g}, 3.3 \mathrm{mmol}$) in $\mathrm{EtOH}(40 \mathrm{ml})$ and the mixture was stirred with heating at $\mathrm{ca} .70^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled, the yellow crystals of dihydropyrazole 11a that sedimented were filtered off, washed with aqueous EtOH , and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$. Yield 0.89 g (70\%), m.p. $283-286^{\circ} \mathrm{C}$. Anal. Found: C, 68.22; H, 5.60; Fe, 14.79; N, 7.03. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FeN}_{2} \mathrm{O}: \mathrm{C}$, 68.41; H, 5.74; Fe, 14.46; N, 7.25\%.
(B) Analogously, Z-chalcone 5b $(1.07 \mathrm{~g}, 3.3 . \mathrm{mmol})$ afforded $0.92 \mathrm{~g}(72 \%)$ of dihydropyrazole 11b, yellow crystals, m.p. $284-286^{\circ} \mathrm{C}$. Anal. Found: C, $68.69 ; \mathrm{H}$, 6.13; $\mathrm{Fe}, 14.33 ; \mathrm{N}, 7.48$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FeN}_{2} \mathrm{O}: \mathrm{C}$, 68.41; H, 5.74; Fe, 14.46; N, 7.25\%.

3.10. 3-Ferrocenyl-1,4,5-triazatricyclo[5.2.2.0 ${ }^{2,6}$ undec-5-ene 12

(A) Analogously, compound 12a ($0.80 \mathrm{~g}, 72 \%$) was obtained from the Z-chalcone $\mathbf{6 a}(1.07 \mathrm{~g}, 3.3 \mathrm{mmol})$. Yellow crystals, m.p. $263-265^{\circ} \mathrm{C}$ (literature data: m.p. $263-265^{\circ} \mathrm{C}$ [1]).
(B) Analogously, E-chalcone 6b $(1.07 \mathrm{~g}, 3.3 . \mathrm{mmol})$ afforded $0.84 \mathrm{~g}(76 \%)$ of dihydropyrazole $\mathbf{1 2 b}$, yellow crystals, m.p. $264-265^{\circ} \mathrm{C}$. Anal. Found: C, $64.74 ; \mathrm{H}$, 6.08; $\mathrm{Fe}, 16.92 ; \mathrm{N}, 12.29$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Fe} \mathrm{N}_{3}: \mathrm{C}$, 64.49; H, 6.32; Fe, 16.66; N, 12.53\%.

3.11. 9-Ferrocenyl-3-methyl-3,7,8-triazabicyclo-[4.3.0]non-6(7)-ene 13

(A) Analogously, compound 13a ($0.81 \mathrm{~g}, 75 \%$) was obtained from the chalcone $7 \mathbf{7 a}(1.03 \mathrm{~g}, 3.3 \mathrm{mmol})$.

Yellow powder, m.p. $188-190^{\circ} \mathrm{C}$. Anal. Found: C, 63.32; H, 6.19; Fe , 17.49; N, 12.73. Calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Fe}$ N_{3} : C, 63.18; H, 6.43; Fe, 17.28; N, 13.00\%.
(B) Analogous reaction of the chalcone $7 \mathrm{~b}(1.03 \mathrm{~g}$, $3.3 \mathrm{mmol})$ yielded $0.75 \mathrm{~g}(70 \%)$ of dihydropyrazoline 13b, yellow powder, m.p. $187-189^{\circ} \mathrm{C}$. Anal. Found: C, 62.91; H, 6.57; Fe, 17.52; N, 13.24. Calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Fe}$ N_{3} : C, $63.18 ; \mathrm{H}, 6.43 ; \mathrm{Fe}, 17.28 ; \mathrm{N}, 13.00 \%$.
3.12. 6-Ferrocenyl-11-methyl-4,5,11-triazatricyclo[6.2.1.0 ${ }^{3,7}$]undec-3-ene 14
(A) The chalcone $8 \mathbf{~}$ ($1.11 \mathrm{~g}, 3.3 \mathrm{mmol}$) gave under standard conditions $0.83 \mathrm{~g}(71 \%)$ of compound 14a, yellow powder, m.p. $239-242^{\circ} \mathrm{C}$. Anal. Found: C, $65.15 ; \mathrm{H}, 6.89 ; \mathrm{Fe}, 16.29 ; \mathrm{N}, 11.74$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FeN}_{3}: \mathrm{C}, 65.34 ; \mathrm{H}, 6.64 ; \mathrm{Fe}, 16.00 ; \mathrm{N}, 12.02 \%$.
(B) Analogously, starting from the E-chalcone $\mathbf{8 b}$ $(1.11 \mathrm{~g}, 3.3 \mathrm{mmol})$, dihydropyrazole $\mathbf{1 4 b}(0.84 \mathrm{~g}, 73 \%)$ was obtained, m.p. $240-242^{\circ} \mathrm{C}$. Anal. Found: C, 65.49 ; $\mathrm{H}, 6.38 ; \mathrm{Fe}, 16.23$; N, 12.30. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FeN}_{3}: \mathrm{C}$, 65.34; H, 6.64; Fe, 16.00; N, 12.02\%.

3.13. N-Acetyldihydropyrazoles 1-4

N-Acetyldihydropyrazoles 1-4 were synthesized using the following general procedure. Dry dihydropyrazoles ($\mathbf{1 1 a - 1 4 a) ~ a n d ~ (1 1 b - 1 4 b) ~ (3 . 3 ~ m m o l) ~ w e r e ~}$ dissolved in acetic anhydride (2 ml). The reaction mixture was stirred for 1 h at ambient temperature and then treated with 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Yellow crystals were filtered off, washed with aqueous EtOH, and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$.

3.14. 4-Acetyl-5-ferrocenyl-12-methoxy-3,4-diazatricyclo[7.4.3.0 ${ }^{2,6}$ trideca-2,9,11,13-tetraene 1

Yield $0.89 \mathrm{~g}(70 \%)$ from compound $11 \mathrm{a}(1.15 \mathrm{~g})$, m.p. $163-164^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm}): 2.04$ (m, $1 \mathrm{H}, \mathrm{CH}_{2}$); $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.01$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$; $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 4.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.13(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$) $4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.93(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{CH}, J=6.8 \mathrm{~Hz}$); 6.94 (dd, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=2.7,8.4$ $\mathrm{Hz}) ; 7.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, J=8.4 \mathrm{~Hz}\right) ; 7.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right.$, $J=2.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm}): 22.37\left(\mathrm{CH}_{3}\right) ; 28.86$, $29.83\left(2 \mathrm{CH}_{2}\right) ; 53.31,61.27(2 \mathrm{CH}) ; 55.50\left(\mathrm{OCH}_{3}\right) ; 68.25$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 66.23,68.02, \quad 68.24,70.50 \quad\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 88.29$ $\left(\mathrm{C}_{i p s o \text { Fc }}\right) ; 107.80,117.86,130.18\left(\mathrm{C}_{6} \mathrm{H}_{3}\right) ; 128.83,131.45$ (2C); 155.95 ($\mathrm{Ar}-\mathrm{O}$); 158.20 ($\mathrm{C}=\mathrm{N}$); 170.21 (C=O). Anal. Found: C, 67.46; H, 5.78; Fe, 12.88; N, 6.35. Calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FeN}_{2} \mathrm{O}_{2}$: C, 67.30; H, 5.65; Fe, 13.04; N, 6.54\%.

Compound 11b (1.15 g) yielded $0.91 \mathrm{~g}(72 \%)$ of $\mathbf{1}$, yellow crystals, m.p. $163-164^{\circ} \mathrm{C}$ (from EtOH). Mixed m.p. $163-164^{\circ} \mathrm{C}$. Anal. Found: C, 67.15 ; H, 5.51 ; Fe,
13.20; N, 6.67. Calc. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FeN}_{2} \mathrm{O}_{2}$: C, 67.30; H, 5.65; Fe, 13.04; N, 6.54\%.

3.15. 4-Acetyl-3-ferrocenyl-1,4,5-triazatricyclo[5.2.2.0 ${ }^{2,6}$ undec-5-ene $\mathbf{2}$

Yield $0.88 \mathrm{~g}(70 \%)$ from compound $\mathbf{1 2 a}(1.12 \mathrm{~g})$, m.p. $201^{\circ} \mathrm{C}$ (from EtOH) (literature data: m.p. $200-201^{\circ} \mathrm{C}$ [1]). Compound 12b (1.12 g) yielded $0.91 \mathrm{~g}(72 \%)$ of $\mathbf{2}$, yellow crystals, m.p. $201-201.5^{\circ} \mathrm{C}$ (from EtOH). Mixed m.p. $200-201^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\delta \mathrm{ppm}$): 1.97 (m, 4H, 2 CH_{2}); $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.07(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$); $3.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 4.26\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.05$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$; $4.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=8.6 \mathrm{~Hz}) ; 4.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=8.6$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm}): 22.56\left(\mathrm{CH}_{3}\right) ; 28.37\left(\mathrm{CH}_{2}\right)$; $35.48\left(\mathrm{CH}_{2}\right) ; 43.26\left(\mathrm{CH}_{2}\right) ; 48.54\left(\mathrm{CH}_{2}\right) ; 58.88,65.72$, $67.73(3 \mathrm{CH}) ; 68.31\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 68.10,68.29,68.34,71.77$ $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 86.96\left(\mathrm{C}_{i p s s \mathrm{Fc}}\right) ; 167.33(\mathrm{C}=\mathrm{N}) ; 170.72(\mathrm{C}=\mathrm{O})$. Anal. Found: C, 63.56; H, 6.27; Fe, 14.99; N, 11.05. Calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FeN}_{3} \mathrm{O}: \mathrm{C}, 63.67 ; \mathrm{H}, 6.15 ; \mathrm{Fe}, 14.81 ; \mathrm{N}$, 11.13\%.

3.16. 8-Acetyl-9-ferrocenyl-3-methyl-3,7,8-triaza-bicyclo[4.3.0]non-6(7)-ene 3

Compound 13a (1.08 g) yielded $0.92 \mathrm{~g}(75 \%)$ of $\mathbf{3}$, yellow crystals, m.p. ${ }^{135-136}{ }^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H}-$ NMR ($\delta \mathrm{ppm}): 1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$; $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.49(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ; 2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.20(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2}$); $3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) ; 4.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 3.85$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 3.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$; $5.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, J=9.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm}): 22.06$ $\left(\mathrm{CH}_{3}\right) ; 27.06\left(\mathrm{CH}_{3}\right) ; 45.71\left(\mathrm{CH}_{2}\right) ; 48.83\left(\mathrm{CH}_{2}\right) ; 53.65$ $\left(\mathrm{CH}_{2}\right) ; 56.13,56.31(2 \mathrm{CH}) ; 69.43\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 65.30,65.81$, $66.96,67.55\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 86.18\left(\mathrm{C}_{i p s o \mathrm{Fc}}\right) ; 158.98(\mathrm{C}=\mathrm{N})$; 168.24 (C=O). Anal. Found: C, 62.57; H, 6.17; Fe, 15.41; N, 11.28. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FeN}_{3} \mathrm{O}: \mathrm{C}, 62.48$; H , 6.35; Fe, 15.30; N, 11.50\%.

Compound 13b (1.08 g) yielded $0.87 \mathrm{~g}(71 \%)$ of 3, yellow crystals, m.p. $135-136^{\circ} \mathrm{C}$ (from EtOH). Mixed m.p. $135-136^{\circ} \mathrm{C}$. Anal. Found: C, 62.33; H, 6.46; Fe, 15.22; N, 11.78. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FeN}_{3} \mathrm{O}: \mathrm{C}, 62.48$; H , 6.35; Fe, 15.30; N, 11.50\%.

3.17. 5-Acetyl-6-ferrocenyl-11-methyl-4,5,11-triazatricyclo[6.2.1.0 ${ }^{3,7}$]undec-3-ene 4

This compound was obtained from dihydropyrazole 14a (1.15 g), yield $0.90 \mathrm{~g}(69 \%)$, yellow crystals, m.p. $114-115^{\circ} \mathrm{C}$ (from benzene). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm}): 1.44$ (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.10$ (m, $1 \mathrm{H}, \mathrm{CH}_{2}$); $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=2.4,13.2 \mathrm{~Hz}) ; 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.79\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=3.6,13.2 \mathrm{~Hz}$); 3.41 (dd, $1 \mathrm{H}, \mathrm{CH}_{2}, J=3.6,6.0 \mathrm{~Hz}$);
$3.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}, J=3.6 \mathrm{~Hz}) ; 3.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}, J=5.0$ $\mathrm{Hz}) ; 4.17\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 4.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.15(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, $J=5.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta \mathrm{ppm}): 22.21\left(\mathrm{CH}_{3}\right) ; 23.23$ $\left(\mathrm{CH}_{3}\right) ; 26.94\left(\mathrm{CH}_{2}\right) ; 34.57\left(\mathrm{CH}_{2}\right) ; 39.18\left(\mathrm{CH}_{2}\right) ; 57.14$, 58.67, 62.65, $65.96(4 \mathrm{CH}) ; 68.15\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 66.18,68.01$, 68.22, $70.31\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 87.72\left(\mathrm{C}_{i p s s \mathrm{Fc}}\right) ; 157.09(\mathrm{C}=\mathrm{N})$; 168.72 (C=O). Anal. Found: C, 64.59; H, 6.27; Fe, 14.38; N, 10.68. Calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FeN}_{3} \mathrm{O}: \mathrm{C}, 64.46$; H , 6.44; Fe, 14.27; N, 10.73\%.

Starting from compound $\mathbf{1 4 b}$ (1.15 g), the acetyl derivative 4 was obtained, yield $0.91 \mathrm{~g}(70 \%)$, m.p. $114-115^{\circ} \mathrm{C}$ (from benzene). Mixed m.p. $114-115^{\circ} \mathrm{C}$. Anal. Found: C, $64.28 ; \mathrm{H}, 6.59 ; \mathrm{Fe}, 14.11 ; \mathrm{N}, 10.57$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FeN}_{3} \mathrm{O}: \mathrm{C}, 64.46 ; \mathrm{H}, 6.44 ; \mathrm{Fe}, 14.27$; N, 10.73%.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 153621 for compound 2. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambrige CB2 1EZ, UK (Fax: $+44-1223-336033$; email: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

Financial support from DGAPA-UNAM (Mexico, grant IN203599) is gratefully acknowledged. We would like to thank Oscar Salvador Yañez Muñoz for ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra.

References

[1] V.I. Sokolov, Vvedenie v Teoreticheskuyu Stereokhimiyu (Introduction to Theoretical Stereochemistry), Nauka, Moscow, 1979 (in Russian).
[2] T. Hayashi, Pure Appl. Chem. 60 (1998) 7.
[3] M. Sawamura, Y. Ito, Chem. Rev. 92 (1992) 857.
[4] J. Spencer, V. Gramlich, R. Häusel, A. Togni, Tetrahedron: Asymmetry 7 (1996) 41.
[5] V.N. Postnov, V.G. Andrianov, Yu.T. Struchkov, A.M. Baran, V.A. Sazonova, J. Organomet. Chem. 262 (1984) 201.
[6] E.I. Klimova, M. Martinez Garcia, T. Klimova Berestneva, L. Ruiz Ramirez, C. Alvarez Toledano, R.A. Toscano, Izv. Akad. Nauk, Ser. Khim. (1999) 765 [Russ. Chem. Bull. 48 (1999) 761 (Engl. Transl.)].
[7] E.I. Klimova, M. Martinez Garcia, T. Klimova Berestneva, C. Alvarez Toledano, R.A. Toscano, L. Ruiz Ramirez, J. Organomet. Chem. 585 (1999) 106.
[8] E.I. Klimova, V.N. Postnov, N.N. Meleshonkova, A.S. Zaks, V.V. Yushkov, Khim. Farm. Zh. 26 (1992) 69.
[9] E.I. Klimova, V.N. Postnov, N.N. Meleshonkova, A.S. Zaks, E.M. Chukichev, Khim. Farm. Zh. 26 (1992) 34.
[10] E.I. Klimova, V.N. Postnov, N.N. Meleshonkova, M. Martinez Garcia, A.S. Zaks, Khim. Farm. Zh. 28 (1994) 33.
[11] E.I. Klimova, L. Ruiz Ramirez, M. Martinez Garcia, R.G. Espinosa, N.N. Meleshonkova, Izv. Akad. Nauk, Ser. Khim. (1996) 2743 [Russ. Chem. Bull. 45 (1996) 2740 (Engl. Transl.)].
[12] V.N. Postnov, E.I. Klimova, M. Martinez Garcia, N.N. Meleshonkova, V.V. Rybakov, L.A. Aslanov, J. Organomet. Chem. 476 (1994) 189.
[13] E.J. Warawa, J.R. Campbell, J. Org. Chem. 39 (1974) 3511.
[14] E.I. Klimova, L. Ruiz Ramirez, T. Klimova, M. Martinez Garcia, J. Organomet. Chem. 559 (1998) 43.
[15] E.I. Klimova, T. Klimova, M. Martinez Garcia, N.N. Meleshonkova, Mendeleev Commun. (1997) 233.
[16] A.N. Nesmeyanov, V.N. Postnov, E.I. Klimova, V.A. Sazonova, Izv. Akad. Nauk SSSR, Ser. Khim. (1979) 239 [Bull. Akad. Sci. USSR, Div. Chem. Sci. 28 (1979) (Engl. Transl.)].
[17] C.H. Chang, R.F. Porter, S.H. Bauer, J. Am. Chem. Soc. 92 (1970) 5313.
[18] L.E. Sutton (Ed.), Tables of Interatomic Distances and Configuration in Molecules and Ions, Chemical Society, London, 1965.
[19] H.-B. Bürgi, J.D. Dunitz (Eds.), Structure Correlation, VCH, Weinheim, New York, 1994.

[^0]: * Corresponding author. Fax: + 52-5-6225366.

 E-mail address: klimova@servidor.unam.mx (T. Klimova).
 ${ }^{1}$ Fax: + 52-5-6162203.

